En 1977, la Organización Internacional de Estándares (ISO) (International Standards Organization), integrada por industrias representativas del medio, creó un subcomité para desarrollar estándares de comunicación de datos que promovieran la accesibilidad universal y una interoperabilidad entre productos de diferentes fabricantes.
El resultado de estos esfuerzos es el Modelo de Referencia Interconexión de Sistemas Abiertos (Open System Interconnection model) OSI.
Modelo OSI es un lineamiento funcional para tareas de comunicaciones y, por consiguiente, no especifica un estándar de comunicación para dichas tareas. Sin embargo, muchos estándares y protocolos cumplen con los lineamientos del Modelo OSI.
Como se mencionó anteriormente, OSI nace de la necesidad de uniformizar los elementos que participan en la solución del problema de comunicación entre equipos de cómputo de diferentes fabricantes.
Estos equipos presentan diferencias en:
Procesador Central.
Velocidad.
Memoria.
Dispositivos de Almacenamiento.
Interfaces para Comunicaciones.
Códigos de caracteres.
Sistemas Operativos.
Estas diferencias propician que el problema de comunicación entre computadoras no tenga una solución simple.
Dividiendo el problema general de la comunicación, en problemas específicos, facilitamos la obtención de una solución a dicho problema.
Esta estrategia establece dos importantes beneficios:
Mayor comprensión del problema.
La solución de cada problema específico puede ser optimizada individualmente. Este modelo persigue un objetivo claro y bien definido:
Formalizar los diferentes niveles de interacción para la conexión de computadoras habilitando así la comunicación del sistema de cómputo independientemente del:
Fabricante.
Arquitectura.
Localización.
Sistema Operativo.
Como funciona el Modelo ISO/OSI
Hoy en día, el modelo OSI es el más ampliamente utilizado para guiar un entorno de red. Cuando los fabricantes de diseño de nuevos productos, que referencia el modelo OSI de conceptos sobre la manera en que los componentes de la red debería funcionar.
El modelo OSI define las normas para:
La forma en que los dispositivos se comunican entre sí.
Los medios utilizados para informar a los dispositivos para enviar los datos y cuándo no para transmitir datos.
Los métodos que se asegura de que los dispositivos tienen un caudal de datos correctos
Los medios utilizados para garantizar que los datos se pasa a, y recibida por el destinatario.
La manera en que los medios de transmisión física es organizado y conectado.
El modelo OSI se compone de siete capas que se presentan como una pila. Datos que se transmite a través de la red se mueve a través de cada capa.
Las siete capas del modelo OSI son los siguientes:
Capa 1 - Física
Capa 2 - de Enlace de Datos
Capa 3 - de Red
Capa 4 - de Transporte
Capa 5 - de Sesión
Capa 6 - de Presentación
Capa 7 - de Aplicación
Cada capa del modelo OSI tiene sus propias funciones únicas. El proceso de envío de datos se inició normalmente en la capa de aplicación, se envía a través de la pila a la capa física y, a continuación, a través de la red al destinatario. Los datos se reciben en la capa física, y el paquete de datos se transmite luego a la pila a la capa de aplicaciones.
La función del modelo OSI es estandarizar la comunicación entre equipos para que diferentes fabricantes puedan desarrollar productos (software o hardware) compatibles (siempre y cuando sigan estrictamente el modelo OSI).
Capas del modelo OSI/ISO
Siguiendo el esquema de este modelo se crearon numerosos protocolos, por ejemplo X.25, que durante muchos años ocuparon el centro de la escena de las comunicaciones informáticas. El advenimiento de protocolos más flexibles donde las capas no están tan demarcadas y la correspondencia con los niveles no era tan clara puso a este esquema en un segundo plano. Sin embargo es muy usado en la enseñanza como una manera de mostrar como puede estructurarse una "pila" de protocolos de comunicaciones.
El modelo en sí mismo no puede ser considerado una arquitectura, ya que no especifica el protocolo que debe ser usado en cada capa, sino que suele hablarse de modelo de referencia. Este modelo está dividido en siete capas:
(Capa 1) Capa Física
La Capa Física del modelo de referencia OSI es la que se encarga de las conexiones físicas de la computadora hacia la red, tanto en lo que se refiere al medio físico (medios guiados: cable coaxial, cable de par trenzado, fibra óptica y otros tipos de cables; medios no guiados: radio, infrarrojos, microondas, láser y otras redes inalámbricas); características del medio (p.e. tipo de cable o calidad del mismo; tipo de conectores normalizados o en su caso tipo de antena; etc.) y la forma en la que se transmite la información (codificación de señal, niveles de tensión/intensidad de corriente eléctrica, modulación, tasa binaria, etc.)
Es la encargada de transmitir los bits de información a través del medio utilizado para la transmisión. Se ocupa de las propiedades físicas y características eléctricas de los diversos componentes; de la velocidad de transmisión, si ésta es uni o bidireccional (símplex, dúplex o full-dúplex). También de aspectos mecánicos de las conexiones y terminales, incluyendo la interpretación de las señales eléctricas/electromagnéticas.
(Capa 2) Capa de enlace de datos
Puede decirse que esta capa traslada los mensajes hacia y desde la capa física a la capa de red. Especifica como se organizan los datos cuando se transmiten en un medio particular. Esta capa define como son los cuadros, las direcciones y las sumas de control de los paquetes Ethernet.
La capa de enlace de datos se ocupa del direccionamiento físico, de la topología de la red, del acceso a la red, de la notificación de errores, de la distribución ordenada de tramas y del control del flujo.
Además del direccionamiento local, se ocupa de la detección y control de errores ocurridos en la capa física, del control del acceso a dicha capa y de la integridad de los datos y fiabilidad de la transmisión. Para esto agrupa la información a transmitir en bloques, e incluye a cada uno una suma de control que permitirá al receptor comprobar su integridad. Los datagramas recibidos son comprobados por el receptor. Si algún datagrama se ha corrompido se envía un mensaje de control al remitente solicitando su reenvío.
La capa de enlace puede considerarse dividida en dos subcapas:
Control lógico de enlace LLC: define la forma en que los datos son transferidos sobre el medio físico, proporcionando servicio a las capas superiores.
Control de acceso al medio MAC: Esta subcapa actúa como controladora del hardware subyacente (el adaptador de red). De hecho el controlador de la tarjeta de red es denominado a veces "MAC driver", y la dirección física contenida en el hardware de la tarjeta es conocida como dirección. Su principal consiste en arbitrar la utilización del medio físico para facilitar que varios equipos puedan competir simultáneamente por la utilización de un mismo medio de transporte. El mecanismo CSMA/CD ("Carrier Sense Multiple Access with Collision Detection") utilizado en Ethernet es un típico ejemplo de esta subcapa.
(Capa 3) Capa de red
El cometido de la capa de red es hacer que los datos lleguen desde el origen al destino, aun cuando ambos no estén conectados directamente. Los dispositivos que facilitan tal tarea se denominan en castellano encaminadores, aunque es más frecuente encontrar el nombre inglés routers y, en ocasiones enrutadores.
Adicionalmente la capa de red lleva un control de la congestión de red, que es el fenómeno que se produce cuando una saturación de un nodo tira abajo toda la red (similar a un atasco en un cruce importante en una ciudad grande). La PDU de la capa 3 es el paquete.
Los routers trabajan en esta capa, aunque pueden actuar como switch de nivel 2 en determinados casos, dependiendo de la función que se le asigne. Los firewalls actúan sobre esta capa principalmente, para descartar direcciones de máquinas.
En este nivel se realiza el direccionamiento lógico y la determinación la ruta de los datos hasta su receptor final.
(Capa 4) Capa de transporte
Esta capa se ocupa de garantizar la fiabilidad del servicio, describe la calidad y naturaleza del envío de datos. Esta capa define cuando y como debe utilizarse la retransmisión para asegurar su llegada. Para ello divide el mensaje recibido de la capa de sesión en trozos (datagramas), los numera correlativamente y los entrega a la capa de red para su envío.
Durante la recepción, si la capa de Red utiliza el protocolo IP, la capa de Transporte es responsable de reordenar los paquetes recibidos fuera de secuencia. También puede funcionar en sentido inverso multiplexando una conexión de transporte entre diversas conexiones de datos. Este permite que los datos provenientes de diversas aplicaciones compartan el mismo flujo hacia la capa de red.
(Capa 5) Capa de sesión
Esta capa establece, gestiona y finaliza las conexiones entre usuarios (procesos o aplicaciones) finales. Ofrece varios servicios que son cruciales para la comunicación, como son:
Control de la sesión a establecer entre el emisor y el receptor (quién transmite, quién escucha y seguimiento de ésta).
Control de la concurrencia (que dos comunicaciones a la misma operación crítica no se efectúen al mismo tiempo).
Mantener puntos de verificación (checkpoints), que sirven para que, ante una interrupción de transmisión por cualquier causa, la misma se pueda reanudar desde el último punto de verificación en lugar de repetirla desde el principio. Página 06
Por lo tanto, el servicio provisto por esta capa es la capacidad de asegurar que, dada una sesión establecida entre dos máquinas, la misma se pueda efectuar para las operaciones definidas de principio a fin, reanudándolas en caso de interrupción. En muchos casos, los servicios de la capa de sesión son parcial o totalmente prescindibles.
En conclusión esta capa es la que se encarga de mantener el enlace entre los dos computadores que estén transmitiendo datos de cualquier índole.
(Capa 6) Capa de presentación
El objetivo de la capa de presentación es encargarse de la representación de la información, de manera que aunque distintos equipos puedan tener diferentes representaciones internas de caracteres (ASCII, Unicode, EBCDIC), números (little-endian tipo Intel, big-endian tipo Motorola), sonido o imágenes, los datos lleguen de manera reconocible.
Esta capa es la primera en trabajar más el contenido de la comunicación que el cómo se establece la misma. En ella se tratan aspectos tales como la semántica y la sintaxis de los datos transmitidos, ya que distintas computadoras pueden tener diferentes formas de manejarlas.
Esta capa también permite cifrar los datos y comprimirlos. En pocas palabras es un traductor.
Por todo ello, podemos resumir la definición de esta capa como aquella encargada de manejar la estructura de datos abstracta y realizar las conversiones de representación de los datos necesarias para la correcta interpretación de los mismos.
(Capa 7) Capa de aplicación
Esta capa describe como hacen su trabajo los programas de aplicación (navegadores, clientes de correo, terminales remotos, transferencia de ficheros etc.). Esta capa implementa la operación con ficheros del sistema. Por un lado interactúan con la capa de presentación y por otro representan la interfaz con el usuario, entregándole la información y recibiendo los comandos que dirigen la comunicación.
Algunos de los protocolos utilizados por los programas de esta capa son HTTP, SMTP, POP, IMAP etc.
No hay comentarios:
Publicar un comentario